
474  S H O R T  C O M M U N I C A T I O N S  

extinction have been used: reflections with k = 2 (mod 4) are 
extinct. Equation (1) can be written as: 

k = 2 .  

This can be reduced to 

¼k=½(mod 1) 

and 

t' 
- -  2 = ½(mod I). 
4 

It follows from (5) that y '  = ¼ and ~. This means that an atom 
at (x,y ,z)  is accompanied by an atom at (x,Y+¼,z) or 
(x,y+¼,z). 

4. Limitations 

The above-mentioned equations can be used if only one 
translational vector between pairs of  atoms is present. Only 
in simple cases may a limited number of  solutions of (5) be 
helpful for a structure determination. However,  errors in 
space-group determination can be avoided by successful 
interpretations of pseudo-extinctions. 
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Infrequently quoted statistical results relating to taxi queues etc. are modified to obtain the probability of obtaining an 
observed number of counts R o = T o - B, when the 'true' numbers of counts are R, T and B for reflexion, total and 
background respectively and 1",, and B o have the expected Poisson distributions. The expression, valid for negative as well 
as positive values of R o, is 

P(Ro) = exp {-(B + T)}(T/B)naZlRo{2(BT)'/21, 

where l,(x) is the hyperbolic Bessel function of the first kind. If the negative values of Ro are included, R,, is an unbiased 
estimator of R. In no case is R~/2 an unbiased estimator of R ~/2, so that Patterson and R 2 methods are preferred to usual 
electron-density and R~ methods in structure determination whenever they are appropriate. 

In the absence of drift and other disturbing influences, the 
number of counts recorded during the counting interval used 
in diffractometers working in the fixed-time mode fluctuates 
in accordance with the Poisson probability distribution. If the 
' true'  number of  counts to be expected in the interval is N, 
the probability that the number actually observed will be N o 
is given by 

p ( N  o) = exp(-N)NN,/No! .  (1) 

The quantities p, N and N O are necessarily non-negative. The 
intensity of a reflexion, say R, is given by the difference 
between the ' true'  number of counts T expected when the 
diffractometer is set to receive the reflexion and the 'true' 
number of counts expected when the diffractometer is set to 
receive the immediate background; 

R = T - B ;  

for simplicity it is assumed that the counting times for 
reflexion and background are the same. The observed values, 
T O and B o, will fluctuate with probabilities given by equations 
like (1), so that the observed value R o will sometimes be 
negative, though the ' true'  value R must be zero or positive. 
What  is the probability p(Ro) of obtaining any particular 
observed difference Ro? The answer is not well known, and is 
to be found in comparatively few text-books. For the sum 

S o = 7",, + B o, 

the result is immediate: the sum of two Poisson-distributed 
variables is itself Poisson-distributed, with parameter  S equal 
to the sum of the parameters T and B of  its components,  but 
obviously the converse is not true for the difference. It is easy 
to write down a formal expression: 

p(R o) = " p(B,)p(T,) ,  (4) 

the summation being over all Bo and T, related by 

Ro = T , , -  B,,. (5) 

Substitution from equation (1) gives 

.: x ,  

p(Ro) = "-- exp{ -(B + 7")/B t~- T",,~R,,/B,,!(B,, + R,,)!. (6) 
It,,=o 

(2) The summation was carried out in a special case by Irwin 
(1937) and in general by Skellam (1946); it results in the 
Bessel function I , ,  related to the ordinary Bessel function J,, 
in the same way as the hyperbolic functions cosh and sinh 
are related to the trigonometric functions cos and sin. The 
required probability distribution for the observed number of 
counts in a reflexion is thus 

P(Ro) = exp { - (B  + T)}(T/B)  n,'/2 Ik, I2(BT)I/2}. (7) 

Extensive tables of I ,  exist (for example, in Abramowitz  & 
(3) Stegun, 1964). As is fairly obvious intuitively, the mean value 
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of R o, negative values included, is R = T - B and its 
variance, again with negative values included, is S = T + B. 
In fact, all the odd semi-invariants of the distribution (7) are 
R and the even ones are S. The skewness of the distribution 
is thus (Cram+r, 1945, pp. 184, 187) 

71 = K3/K~/2= R/53/2 (8) 

and the excess is 

72 = K,/K~ = I/S. (9) 

The skewness and excess both approach zero as the total 
number of counts S increases - the skewness more rapidly in 
fact than for the Poisson distr ibut ion- so that for strong 
reflexions or high background the distribution approaches 
the normal (Gaussian), though the approximation is not as 
good in the 'tails' as it is near the peak. It is amusing that the 
same distribution applies to the length of the queue of 
customers waiting at a taxi rank (or the length of the queue 
of taxis waiting for customers) when taxis and customers 
arrive at random (Kendall, 1951). 

Since R o, negative values included, is an unbiased 
estimator of R, whereas R,,, positive values only or values 
greater than 3a only, is not, the above considerations 
reinforce the recommendations of Hirshfeld & Rabinovich 
(1973) and Wilson (1976) that structure determination, 
scaling, etc. should be carried out with all the measured 
intensities, rather than on a set with weak intensities excluded 

or on the structure factors as ordinarily defined - the square 
roots of the measured intensities are not unbiased estimates 
of the true structure factors (lbers & Hamilton, 1964). One 
thus prefers Patterson syntheses and refinement in R 2 
whenever possible. However, electron-density syntheses must 
be used when determination of the details of electron density 
is the focus of interest, as in attempts to study bonding 
electrons or the non-sphericity of atoms. One is thus left with 
the question, not yet satisfactorily answered: if only 7",, and 
B o are known, is there an objective real unbiased estimator of 
RI/29 
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Gaussian scattering curves for bond charges in urea and thiourea whose parameters were determined from 123 K X-ray 
data are compared with those derived theoretically. A fairly close agreement among the different scattering curves was 
found. 

In a previous paper (Hellner, 1977) the refinement of a 
density model composed of atomic cores, bonded and non- 
bonded electrons was described. The charge clouds in the 
bonds are, like the temperature factor, represented by 
Gaussian distributions. Such a model was applied to urea 
and thiourea; for both compounds accurate X-ray data were 
collected at 123 K (Mullen & Hellner, 1978). At the end of 
the refinement the thermal smearing of the charge clouds was 
eliminated from the bond charges (Scheringer, Mullen & 
Hellner, 1978), and the Gaussian charge cloud at rest was so 
obtained. Its Fourier transform, i.e. its scattering curve, is 
also described by the parameters of the distribution. Since 
these parameters were obtained from the refinement, we 
acquired an experimental scattering curve for the charge 
clouds of the bonding electrons in urea and thiourea. It is 

interesting to compare the scattering curves obtained with 
other proposed curves. 

Fritchie (1966) derived form factors for C - C  bond 
charges from two-centre orbital products by considering the 
overlap integrals. Fritchie's scattering curves are not 
spherically symmetric but only have the rotational symmetry 
of the bond. Cromer & Larson (1974) derived spherically 
symmetric bond scattering factors of Gaussian shape for 
various pairs of atoms. Their derivation is based on a 
spherically symmetric approximation of the scattering 
factors for two-centre orbital products (Stewart, 1969). 

The various scattering curves for bond charges are shown 
in Figs. 1 and 2. Fritchie's (1966) curves refer to a C - C  
bond, whereas all the other curves refer to C - N  bonds. All 
scattering curves are normalized to a total charge of one 


